Private Zeroth-Order Optimization with Public Data

Xuchen Gong and Tian Li (University of Chicago)

Challenges

- First-order differentially private (DP) algorithms has high computation and memory cost
- Zeroth-order DP methods are efficient to privatize as they leverage function evaluations to approximate gradients
- However, zeroth-order approaches suffer from low utilities and limited application scenarios

Our Insights

We propose to **leverage public information** (batch gradient, which is efficient to compute) to improve private zeroth-order gradient estimation; we introduce the first set of **public-data-assisted zeroth-order optimizers** (**PAZO**)

PAZO achieves

- stronger privacy/utility tradeoffs across vision and language tasks in both pre-training and fine-tuning settings
- outperform first-order methods (with public gradients) under tight privacy
- 16× runtime speedup

Background: DPZero

1. Sample perturbation u uniformly from sphere $\sqrt{d}\mathbb{S}^{d-1}$

2.
$$g \leftarrow \left(\frac{1}{|B|} \sum_{\xi \in B} \operatorname{clip}_C \left(\frac{f(x+\lambda u;\xi) - f(x-\lambda u;\xi)}{2\lambda}\right) + z\right) u \quad z \sim \frac{1}{|B|} \mathcal{N}(0, qC^2\sigma^2)$$

Function queries to privatize by clipping and adding noise

Zhang, Liang, et al. "Dpzero: Private fine-tuning of language models without backpropagation." ICML 2024.

PAZO-M: Mixing Zeroth and First-Order Gradients

$$x \leftarrow \eta(\alpha g_{\mathrm{pub}} + (1 - \alpha)g_{\mathrm{pri}})$$

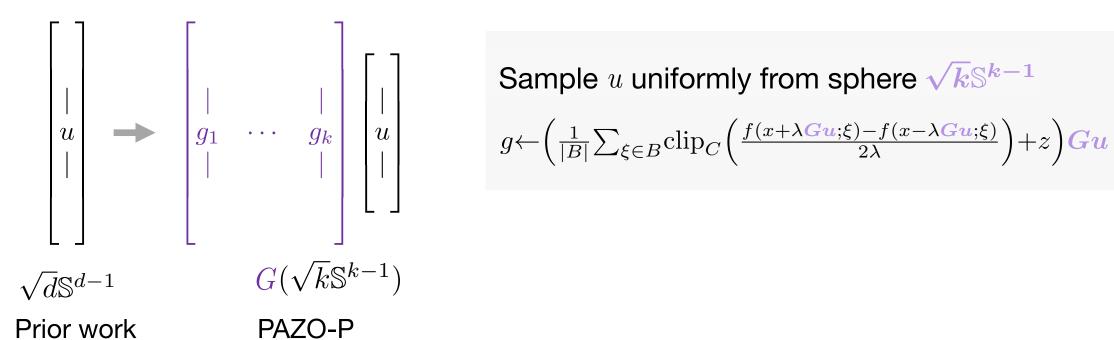
$$\downarrow$$
First-order grad Zeroth-order grad on public data on private data

Sample u uniformly from sphere $d^{\frac{1}{4}}\mathbb{S}^{d-1}$

$$g_{\text{pri}} \leftarrow \left(\frac{1}{|B|} \sum_{\xi \in B} \text{clip}_C \left(\frac{f(x+\lambda u;\xi) - f(x-\lambda u;\xi)}{2\lambda}\right) + z\right) u$$

PAZO-P: Sampling in Public Gradient Subspace

(ortho)normalized gradients on *k* batches of public data



$$g \leftarrow \left(\frac{1}{|B|} \sum_{\xi \in B} \operatorname{clip}_C \left(\frac{f(x + \lambda G u; \xi) - f(x - \lambda G u; \xi)}{2\lambda}\right) + z\right) G u$$

PAZO-S: Select the Best Public Gradient

1. Find the best public descent direction

$$\begin{cases} \begin{vmatrix} & & & | \\ g_1, & \cdots, & g_k \\ & & \end{vmatrix} \implies \{f(x - \eta g_1), & \cdots, & f(x - \eta g_k)\} \text{ with privatization}$$
$$\implies j^* \leftarrow \arg\min_{j \in [k]} \operatorname{priv}(f(x - \eta g_j))$$

2. Perturb the best candidate and compare

$$\text{priv}(f(x-\eta(g_{j^\star}+z'))) ? \text{priv}(f(x-\eta g_{j^\star})) \qquad z' \sim \mathcal{N}(0,\epsilon^2 I_d)$$

$$\text{If yes, use } g_{j^\star}+z'$$

$$\text{Else, use } g_{j^\star}$$

Convergence

[γ -similar] Public B' and private data B are γ -similar if $\|\nabla f(x;B) - \nabla f(x;B')\| \leq \gamma, \forall x$

Our assumptions: L-smooth, M-lipschitz, γ -similar, and optionally $|f(x;B)| \leq S, \forall x$

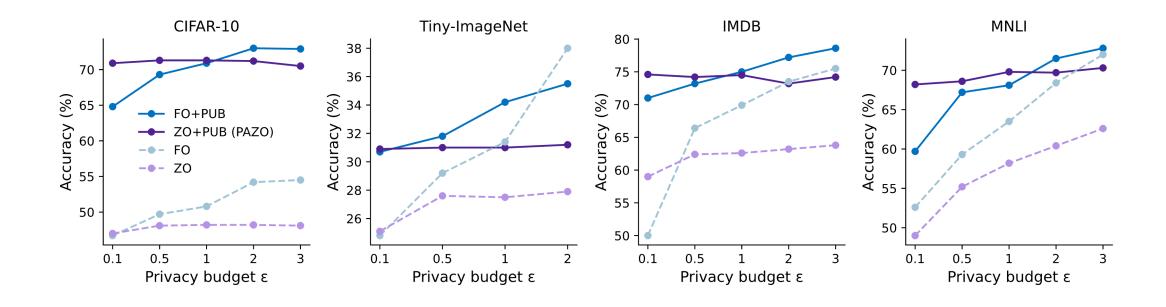
Method	wo. $ f(x) \leq S$	$w. f(x) \le S$
DP-SGD	$O(\sqrt{d})$	/
DPZero		$O(\sqrt{d}\log d)$
PAZO-M	$O(\frac{1-\alpha}{\alpha}\sqrt{d})$	$O(\frac{1-\alpha}{\alpha}d^{\frac{1}{4}})$
PAZO-P	O(k)	$O(\sqrt{k} \log k)$
PAZO-S	O(c)	

PAZO-M improves prior work by $d^{\frac{1}{4}} \log d$

PAZO- $\{P,S\}$ achieve d-independent rates

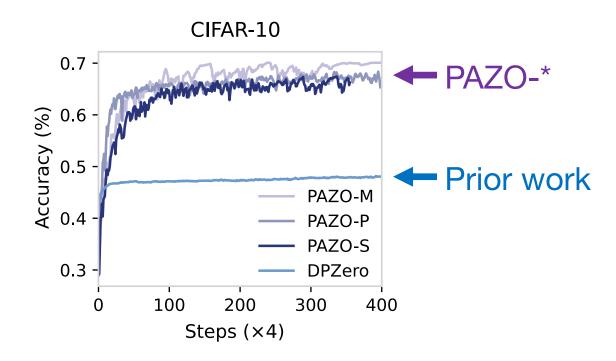
c is constant independent of k and d.

Improved Privacy/Utility Tradeoffs



- Without public data, vanilla zeroth-order (ZO) underperforms first-order methods (FO)
- With public data, PAZO outperforms the best first-order methods with public data (FO+PUB)

Time Efficiency



Slow convergence is a known disadvantage of zeroth-order methods; PAZO-* converges faster than vanilla ZO (DPZero)

Future Work

- Sharpen the convergence bounds by considering other data similarity metrics
- Explore a broader set of (public, private) dataset pairs in practical DP applications

Paper: openreview.net/pdf?id=zytITzY4IW

Code: github.com/xuchengong/pazo

Check out our poster at Exhibit Hall C,D,E during 4 Dec 11-14:00 PST